Аминокислоты – биологически важные органические соединения, состоящие из аминогруппы и карбоновой кислоты, и имеющие боковую цепь, специфичную для каждой аминокислоты. Ключевые элементы аминокислот – углерод, водород, кислород и азот. Прочие элементы находятся в боковой цепи определенных аминокислот. Известно около 500 аминокислот, которые можно классифицировать по-разному. В виде белков аминокислоты являются вторым (после воды) компонентом мышц, клеток и других тканей человеческого организма. Аминокислоты играют решающую роль в таких процессах, как транспорт нейротрансмиттеров и биосинтезе.
Многие протеиногенные и непротеиногенные аминокислоты также играют важную, не связанную с образованием белка, роль в организме. Например, в головном мозге человека глутамат (стандартная глутаминовая кислота) и гамма-аминомасляная кислота (»ГАМК», нестандартная гамма-аминокислота), являются основными возбуждающими и тормозящими нейромедиаторами. Гидроксипролин (основной компонент соединительной ткани коллагена) синтезируют из пролина; стандартная аминокислота глицин используется для синтеза порфиринов, используемых в эритроцитах. Нестандартный карнитин используется для транспорта липидов. 9 из 20 стандартных аминокислот являются «незаменимыми» для человека, потому что они не производятся организмом, их можно получить только с пищей. Другие могут быть условно незаменимы для людей определенного возраста или людей, имеющих какие-либо заболевания. Из-за своей биологической значимости аминокислоты играют важную роль в питании и обычно используются в пищевых добавках, удобрениях и пищевых технологиях. В промышленности аминокислоты используются при производстве лекарств, биоразлагаемого пластика и хиральных катализаторов.
В организме человека небелковые аминокислоты также играют важную роль в качестве промежуточных продуктов метаболизма, например, в биосинтезе нейромедиатора гамма-аминомасляной кислоты. Многие аминокислоты используются для синтеза других молекул, например: Триптофан является предшественником нейромедиатора серотонина. L-Тирозин и его предшественник фенилаланин являются предшественниками нейромедиаторов дофамина катехоламинов, адреналина и норадреналина. Глицин является предшественником порфиринов, таких как гем. Аргинин является предшественником оксида азота. Орнитин и S-аденозилметионин являются предшественниками полиаминов. Аспартат, Глицин и глутамин являются предшественниками нуклеотидов. Фенилаланин является предшественником различных фенилпропаноидов, которые играют важную роль в метаболизме растений. Тем не менее, все еще известны не все функции других многочисленных нестандартных аминокислот. Некоторые нестандартные аминокислоты используются растениями для защиты от травоядных животных. Например, канаванин является аналогом аргинина, который содержится во многих бобовых, и в особо крупных количествах в Canavalia gladiata (канавалия мечевидная). Эта аминокислота защищает растения от хищников, например насекомых, и при употреблении некоторых необработанных бобовых может вызывать заболевания у людей. Небелковая аминокислота мимозин содержится в других видах бобовых, особенно в Leucaena leucocephala. Это соединение является аналогом тирозина и может вызвать отравление у животных, пасущихся в местах произрастания этих растений.